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Course

This course covers nonparametric statistical methods.
Class Meetings MW @4:00 PM CT via Zoom
R/RStudio will be used
Assignments (4-6)
Take Home Exams (2)

If you catch any typos or inconsistencies in the slides please
refer them to me at acohen@uwf.edu
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Introduction to Statistics and
Probability



What is Statistics?

The next time you read a newspaper, look for items such as the
following:

53% of the people surveyed believe that the president is
doing good job
The average selling price of a new house is $74, 500
The unemployment level is 4.9%

The numerical facts or data in the news items (53%, $74, 500,
4.9%) commonly are referred to as statistics.
In common, everyday usage, the term statistics refers to
numerical facts or data.
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What is Statistics?

The �eld of statistics involves much more than simply the
computation and presentation of numerical data.
In a broad sense the subject of statistics involves the study of:

how data are collected
how they are analyzed
how the results are interpreted
Data visualization

A major reason for collecting data, analyzing, and interpreting
data is to provide engineers, managers, public, other researchers,
with the information needed to make e�ective decisions.
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What is Statistics?

Descriptive In many statistics studies we are interested only in
summarizing a set of data in order to present it in a
more convenient or more easily interpreted form.
Central Tendency: mean, median
Dispersion: variance, standard deviation, IQR
Distribution: histogram, Boxplot, scatter

Inferential Much of statistics is concerned with analyzing
sample data in order to learn about characteristics
of a population (parameters).
Probability distributions
Estimation
Hypothesis Testing
Con�dence Intervals

This course covers Nonparametric Statistics.
What is the nonparametric Statistics?
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What is Statistics?

Nonparametric Statistics?
Nonparametric statistics or distribution-free methods make no
assumptions about the underlying probability distributions. On
the other side, Parametric statistics depends on knowing the
population distribution (e.g. normal).

Examples
Most parametric procedures assume the normality or other
parametric distribution of the response variable such as: ANOVA,
t-tests, linear regression models.
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Advantages Probability statements obtained from most
nonparametric statistical tests are exact probabilities.
If a sample size as small as n=3 is used, there is no
alternative to using a nonparametric statistical tests
unless the population distribution is know exactly.
The nonparametric tests are only slightly less e�cient
than their normal theory competitors when the
underlying populations are normal.
Nonparametric methods are relatively insensitive to
outliers.
Nonparametric methods are available to treat data which
are ordinal and nominal scales.

Disadvantages
Nonparametric tests can be less powerful than the
parametric tests under the required assumptions (e.g.
normal distribution).
Nonparametric procedures lose information, because
they only use the orders, signs, and di�erences while
eliminating the real values of the data.

6 59



Probability Concepts

Experiment
An experiment is the process of following a well de�ned set of
rules, where the result of following those rules is not known
prior to the experiment.

Examples
Tossing of a coin, rolling a die.

All possible outcomes of an experiment (sample points)
constitute the sample space.
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Probability Concepts: counting methods

Rules that help us count! the sample space size and therefore
�nd probabilities.

Rule 1
If an experiment consists of n trials where each trial may result
in one k possible outcomes, there are kn possible outcomes of
the entire experiment.

Examples

Tossing of a coin: 21

Tossing of a coin 5 times: 25 = 32
Rolling a die: 61
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Rule 2
There are n! ways of arranging n distinguishable objects.

Examples

n plastic chips in a box.
How many ways can we arrange the letters A, B, and C?
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Rule 3
If a group of n objects is composed of n1 identical objects of type 1, n2
identical objects of type 2,..., nr identical objects of type r, the number
of distinguishable arrangements int a row, denoted by:

n!
n1!n2!...nr!

If a group of n objects is composed of k identical objects of one kind
and the remaining (n-k) objects are identical of a second kind, the
number of distinguishable arrangements of n objects into a row is
given by: (

n
k

)
=

n!
k!(n− k)!

Examples

Find the probability of a football team to win at least 7
games in a 8-game season.
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Probability Concepts: Definitions

Sample space is the collection of all possible di�erent outcomes
of an experiment.

Sample point is a possible outcome of the experiment.
An event is any set of point in the sample space.

If we repeat the experiment under fairly uniform conditions, the
relative frequency of the occurrence of the point represents an
approximation to the probability of that point.
These probabilities may be any number between 0 and 1.
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Probability Concepts: Definitions

Probability
If A is an event associated with an experiment, and if nA
represents the number of times A occurs in n independent
repetitions of the experiment, the probability of the event A,
denoted by P(A), is given by:

P(A) = lim
n→∞

nA
n (1)

Which is read "the limit of the ratio of the number of times A
occurs to the number of times the experiment is repeated, as the
number of repetitions approaches in�nity".
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Probability Concepts: Properties

If A is an event, then 0 ≤ P(A) ≤ 1.
Let the whole sample space be denoted S. Then P(S) = 1.
P(A) = 1− P(A)
If A and B are events, then P(A ∪ B) = P(A) + P(B)− P(AB).
If A and B are independent events, then P(AB) = P(A)P(B).
If events A and B are mutually exclusive (or disjoint), then
P(A ∩ B) = 0.
The conditional probability of A given B is P(A | B) = P(A∩B)

P(B)
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Random variables

Most of the statistical studies are interested in numerical values
such as the number of days it rains; the number of patients
su�ering from a side e�ect and so forth. We can de�ne many
random variables of interest associated with a sample space.

Random variable
A random variable is a function that assigns real numbers to the
points in a sample space.

Examples
Tossing a coin twice: HH, HT, TH and TT.
De�ne X the number of heads then X can take on 0, 1, 2.
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Random variables & probability function

Random variables can be either Continuous or Discrete.

Discrete can take on a countable number of possible
outcomes.

Continuous can take on any value in an interval.

Probability function
A Probability function is a function that assigns probabilities to
each sample point (each value of a random variable X).

Discrete Probability Mass Function - PMF
Continuous Probability Density Function - PDF

Another probability function is the Cumulative Distribution
Function - CDF, denoted by F(X ≤ x).
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Random variables & probability function

Binomial distribution: X ∼ Binom(n,p); where n is number of
trials and p is probability of having a “success" outcome in
each trial.
Normal distribution: X ∼ N(µ, σ2); where µ is the population
mean and σ2 is the population variance.
Chi-squared distribution: X ∼ χ2(K); where K is the degrees
of freedom.
F-distribution: X ∼ F(n,m); where n and m are the degrees
of freedom.
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Random variables & probability function

Sometimes we characterize a random variable (r.v.) X using:
Expected value E(X) =

∑
∀x xP(X = x)

Variance Var(X) = E(X2)− [E(X)]2

Quantile The points dividing the distribution of X into equal
intervals. The number xp for a given value of p is called the pth
quantile of the r.v. X if

P(X < xp) ≤ p and
P(X ≤ xp) ≥ p

Quantiles
2-quantile = Median; 4-quantile=quartile; 100-quantile =
percentile.
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Bootstrap for Confidence Intervals

One of the principal goals of a statistic is to estimate an
unknown population parameter. Commonly, estimation is
the process of �nding values/estimates/approximations of
the population parameters based on the sample.
An estimator is the method that provides a point estimate of
the unknown population parameter.
An interval estimate can be used to provide a range of values
of the unknown parameter. A con�dence interval consists of
a range of values of the unknown population parameter with
a certain con�dence level.
The con�dence interval is random.
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Bootstrap for Confidence Intervals

For example, if we would like to �nd the con�dence interval for
the population mean µ, we have various situations:

Normal data: x± z1−α/2( σ√
n)

Non-Normal data, large sample size n ≥ 30: x± z1−α/2( σ√
n)

Normal data, σ is unknown: x± t1−α/2( s√
n)

Non-Normal data, large sample n ≥ 30: x± t1−α/2( s√
n) or

x± z1−α/2( s√
n), they will give similar results.

Non-Normal data, small sample n < 30: Nonparametric
con�dence interval (Bootstrap technique)
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Bootstrap for Confidence Intervals

Why?

When the population distribution is unknown.
The derivations are too di�cult to �nd the variance of a
statistic (e.g. the sample variance)
The sample size is small, say n=3

The bootstrap technique can be used to �nd con�dence intervals
for any population parameter.
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Bootstrap for Confidence Intervals

How?
The bootstrap methods proceed with resampling (with
replacement) from the data (original sample) in order to
generate a large number of bootstrap samples.

Example
Suppose we have 10 data points: 1, 1, 2, 3, 3, 3, 5, 4, 7, 7. We view
this as a sample taken from an underlying distribution. A
resampled data (with replacement) of 5 observations from these
10 data points would look like this 1, 1, 3, 7, 1.
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Bootstrap for Confidence Intervals

Principal
Suppose we have X1, X2, . . . , Xn drawn from a distribution F. A
bootstrap sample X∗1 , X∗2 , . . . , X∗n is a resampled data of the same
size. You can think about the bootstrap sample as a sample
drawn from the empirical distribution F∗. The bootstrap setup
will follow:

X1, X2, . . . , Xn is a data sample drawn from a distribution F

θ is a statistic calculated from the sample
F∗ is the empirical distribution of the data (resampling)
X∗1 , X∗2 , . . . , X∗n is a resampled data of the same size
θ∗ is a statistic calculated from the bootstrap sample
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Bootstrap for Confidence Intervals

The core concepts of the bootstrap technique

1. F∗ ⇔ F
2. The variation of θ is well approximated by the variation of θ∗

3. The bootstrap is based on the law of large numbers (with
enough data the empirical distribution will be a good
approximation of the true distribution)

4. It is worth to say that resampling will not improve our point
estimate.

They are di�erent ways to construct the bootstrap con�dence
intervals.
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Bootstrap for Confidence Intervals

Percentile method
It involves creating many bootstrap samples (say, 5000), and
calculating the observed statistic θ∗ for each bootstrap sample.
Then a 95% con�dence interval for θ would be:

θ∗0.025 ≤ θ ≤ θ∗0.975 (2)
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Bootstrap for Confidence Intervals

The Residual method
The residual method is based on the distribution of the residuals
from the original estimate θ̂. We create large number of
bootstrap samples and calculate the observed statistic θ∗ for
each bootstrap sample. We then compute e∗ = θ∗ − θ̂. Then a
95% con�dence interval for θ would be:

θ̂ − e∗0.975 ≤ θ ≤ θ̂ − e∗0.025 (3)

There is another method called BCa method (Bias-Corrected and
accelerated), this method chooses the lower and the upper
bounds to make the interval median unbiased and adjust for
skewness.
R: The package boot in R has several functions to perform the
bootstrap technique.
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Hypothesis Testing

De�nition
Hypothesis Testing is the process of inferring from a sample
whether or not a given statement about the population appears
to be true.

Examples

Whether or not the treatment is e�ective?
Method 1 is better than method 2?
Process is statistically in-control?
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Hypothesis Testing

Null hypothesis H0: it is usually formulated for the express
purpose of being rejected.

I No di�erences (=;≤;≥)
I The process is in-control

Alternative Hypothesis H1: If H0 is rejected, the H1 may be
accepted. It’s the statement that the experimenter would
like to prove.

I There are di�erences ( 6=;<;>)
I The process is out-of-control
I The quality of the product or service is unsatisfactory
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Hypothesis Testing

The test statistic is chosen to be sensitive to the di�erence
between the null hypothesis and the alternative hypothesis.

I A con�dence interval is the inversion of a hypothesis test in
that the con�dence interval is the collection of the null
hypotheses that are not rejected by the data

I A powerful hypothesis test relates to a short con�dence
interval.

Level of signi�cance (α): Since the level of signi�cance goes
into the determination of whether H0 is or is not rejected,
the requirement of objectivity demands that α be set in
advance.

I The level should be determined by our estimate regarding
the importance of our �ndings

I The type II error β which is inversely proportional to α (type 1
error). If we would like to decrease α mechanically we will
increase the type II error, β.
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Hypothesis Testing

The Null distribution is the distribution of the test statistic
when H0 is true. This de�nes the rejection region along with
the level of signi�cance.
The Power: The probability of rejecting H0 when it is in fact
false. Power = 1− β = P(RejectingH0|H0isFALSE).
P-value is the probability, computed assuming that H0 is
true, that the test statistic would take a value as extreme or
more extreme than that actually observed.
P-value is a random variable.
Accepting or Failing to Reject H0 does not mean that the
data prove the null hypothesis to be true.
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Hypothesis Testing

Decision
Fail to Reject H0 Reject H0

H0 is TRUE Correct decision (1-α) Type I error - α

H0 is FALSE Type II error - β Correct decision (1-β)
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Hypothesis Testing: Properties

Once the hypotheses are formulated, there are generally several
hypothesis tests available for testing the null hypothesis. We
consider:

Are the assumptions of the test met?
Unbiased test: test should be more likely to reject H0 when
H0 is false than when H0 is true. power = 1− β > αpower = 1− β > αpower = 1− β > α

Consistent test: limn→∞ Power → 1
Conservative test: the actual level of signi�cance is smaller
than the stated level of signi�cance.
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Hypothesis Testing: Properties

Relative E�ciency

The concept is concerned with the amount of increase in
sample size which is necessary to make a test, say B, as
powerful as a test A.
The Relative E�ciency is the ratio

n2/n1

where n1 and n2 are the sample sizes of two tests T1 and T2,
respectively, in order to have the same power under the
same level of signi�cance. We read the relative e�ciency of
T1 to T2 or the e�ciency of T1 relative to T2.
The Asymptotic Relative E�ciency (A.R.E) is the limit of n2/n1
when n1 approaches in�nity.
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Hypothesis Testing: Properties

Test 1 Test 2 A.R.E. Assumptions
Sign Test Paired t test 0.637 di�. are i.i.d normal
Sign Test Wilcoxon signed test 0.667 di�. are i.i.d normal
Sign Test Paired t test or Wilcoxon signed 0.333 di�. are i.i.d uniform (light-tailed)
Sign Test Paired t test 2 di�. are i.i.d Laplace (heavy-tailed)
Sign Test Wilcoxon signed 1.333 di�. are i.i.d Laplace (heavy-tailed)
Cox-Stuart Trend t test on regression coe�cient 0.78 normal
Cox-Stuart Trend Spearman’s or Kendall’s rank 0.79 normal
Cox-Stuart Trend Spearman’s or Kendall’s rank 0.79 normal
The Median test one-way ANOVA 0.64 Normal
The Median test one-way ANOVA 2 Laplace (heavy-tailed)
Mann-Whitney Test Two-Sample t test 0.955 Normal
Mann-Whitney Test Two-Sample t test 1 Uniform
Mann-Whitney Test Two-Sample t test 1.5 Laplace
Mann-Whitney Test The Median test 1.5 Normal
Mann-Whitney Test The Median test 3 Uniform
Mann-Whitney Test The Median test 0.75 Laplace

Table: A.R.E of Test 1 to Test 2
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Tests based on the Binomial

Binomial experiment

n independent trials
Each trial has two possible outcomes
p is the probability of having a “success" for each trail.
The binomial describes the probability of obtaining k
successes in the n trials

Remark
Many experimental situations in the applied science may be
modeled as a Binomial experiment.

Customers enter a store and decide to buy or not a product.
Animals given a certain medicine and either they are cured
or not cured.
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Tests based on the Binomial: Estimation of p

Binomial Test

Data n independent trials. Each outcome is in either
“class 1" or “class 2"

Assumptions Binomial experiment assumptions
Test statistic We are interested in the probability of the

outcome “class 1". The test statistic is the number of
observations in “class 1", denoted T.

Null distribution T ∼ Binom(n,p = p∗) under the null
hypothesis. Use Binomial distribution if n ≤ 20,
otherwise use the normal approximation
xq = np+ zq

√
np(1− p)
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Tests based on the Binomial: Estimation of p

Binomial Test: Hypotheses

Two-tailed test

H0 :p = p∗

H1 :p 6= p∗

The rejection region is de�ned by t1 and t2 as
follows:

P(T ≤ t1) ≈ α/2 = α1 and P(T ≤ t2) ≈ 1−α/2 = 1−α2

Decision Rule If (TObserved ≤ t1 OR TObs > t2), then REJECT H0
P-value 2×min{P(T ≤ TObserved);P(T ≥ TObserved)}

The actual α = α1 + α2
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Tests based on the Binomial: Estimation of p

Binomial Test: Hypotheses

Upper-tailed test

H0 :p ≤ p∗

H1 :p > p∗

The rejection region is de�ned by t as follows:

P(T ≤ t) ≈ 1− α

Decision Rule If TObs > t then REJECT H0
P-value P(T ≥ TObs)
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Tests based on the Binomial: Estimation of p

Binomial Test: Hypotheses

Lower-tailed test

H0 :p ≥ p∗

H1 :p < p∗

The rejection region is de�ned by t as follows:

P(T ≤ t) ≈ α

Decision Rule If TObs ≤ t then REJECT H0
P-value P(T ≤ TObs)
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Tests based on the Binomial: Estimation of p

Binomial Test: Normal approximation
The p-values using the normal approximation when n > 20 are
given using:

P(T ≤ TObs) ≈ P
(
Z ≤ TObs − np∗ + 0.5√

np∗(1− p∗)

)
and

P(T ≥ TObs) ≈ 1− P
(
Z ≤ TObs − np∗ − 0.5√

np∗(1− p∗)

)
which includes 0.5 as a correction of continuity that improves the
normal approximation to the binomial.

R: The function binom.test can be used to perform the test in R,
which provides also the con�dence intervals.
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Tests based on the Binomial: Estimation of xp

Quantile Test

Data Let X1, X2, X3, ..., Xn be a random sample. The data
consist of observations on the Xi.

Assumptions The Xi are a random sample. The measurement
scale of the Xi is at least ordinal.

Test statistic We have two statistics:
T1 The number of observations≤≤≤ x∗
T2 The number of observations<<< x∗

IF T1 = T2 then none of the numbers in the data
exactly equal to x∗

Null distribution Ti ∼ Binom(n,p = p∗), i = 1, 2 under the null
hypothesis. Use Binomial distribution if n ≤ 20,
otherwise use the normal approximation
xq = np+ zq

√
np(1− p)
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Tests based on the Binomial: Estimation of p

Quantile Test: Hypotheses

Two-tailed test

H0 :p∗th population quantile is x∗

[H0 :P(X < x∗) ≤ p∗ and P(X ≤ x∗) ≥ p∗]
H1 :p∗th population quantile is not x∗

The rejection region is de�ned by t1 and t2 as follows:

P(T ≤ t1) ≈ α/2 = α1 and P(T ≤ t2) ≈ 1− α/2 = 1− α2

Decision Rule If (TObserved ≤ t1 OR TObs > t2), then REJECT H0
P-value 2×min{P(T ≤ TObserved);P(T ≥ TObserved)}

The actual α = α1 + α2
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Tests based on the Binomial: Estimation of p

Quantile Test: Hypotheses

Upper-tailed test - T2

H0 :p∗thpopulation quantile is at least as greater as x∗

H0 :P(X < x∗) ≤ p∗P(X < x∗) ≤ p∗P(X < x∗) ≤ p∗

H1 :p∗thpopulation quantile is less than x∗

H1 :P(X < x∗) > p∗P(X < x∗) > p∗P(X < x∗) > p∗

The rejection region is de�ned by t as follows:

P(T ≤ t) ≈ 1− α

Decision Rule If TObs > t then REJECT H0
P-value P(T ≥ TObs)
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Tests based on the Binomial: Estimation of p

Quantile Test: Hypotheses

Lower-tailed test - T1

H0 :p∗thpopulation quantile is not greater as x∗

H0 :P(X ≤ x∗) ≥ p∗P(X ≤ x∗) ≥ p∗P(X ≤ x∗) ≥ p∗

H1 :p∗thpopulation quantile is greater than x∗

H1 :P(X ≤ x∗) < p∗P(X ≤ x∗) < p∗P(X ≤ x∗) < p∗

The rejection region is de�ned by t as follows:

P(T ≤ t) ≈ α

Decision Rule If TObs ≤ t then REJECT H0
P-value P(T ≤ TObs)
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Tolerance Limits

Con�dence limits are limits within which we expect a given
population parameter, such as the mean, to lie. Tolerance limits
are limits within which we expect a stated proportion of the
population to lie with a certain probability. Formally:

P(X(r) ≤ at least a fraction q of the population ≤ X(n+m−1)) ≥ 1−α
(4)

For one-sided tolerance limits, let either r or m equals to zero,
where X(0) and X(n+1) are considered to be −∞ and +∞.
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Tolerance Limits: Sample size

The tolerance limits can be used to �nd:

A sample size n

A sample size n needed to have at least q proportion of the
population between the tolerance limits with 1− α
probability.

n ≈ 1
4χ

2
1−α;2(r+m)

1+ q
1− q +

1
2(r +m− 1)

where χ21−α;2(r+m) is the quantile of a chi-squared random
variable.

You can use exact values from the tables, for the one-sided
tolerance limits use Table A5. For the two-sided limits use Table
A6.
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Tolerance Limits: percent q

The tolerance limits can be used to �nd:

The percent q

The percent q of the population that is within the tolerance
limits, given n, 1− α, r, and m:

q =
4n− 2(r +m− 1)− χ21−α;2(r+m)

4n− 2(r +m− 1) + χ21−α;2(r+m)

R: The function nptol.int {tolerance} can be used to �nd either
the sample size or the percent q .
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Tests based on the Binomial: paired data

Sign Test
The sign test is a binomial test with p = 0.5. It is useful for
testing whether one random variable in a pair (X, Y) tends to be
larger than the other random variable in the pair.

Data Let X1, X2, X3, ..., Xn be a random sample. The data
consist of observations on the Xi.

Assumptions The Xi are a random sample. The measurement
scale of the Xi is at least ordinal.

Example

Consider a clinical investigation to assess the e�ectiveness
of a new drug designed to reduce repetitive behavior, we can
compare time before and after taking the new drug.
This test can be compared to the parametric t-paired test.
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Tests based on the Binomial: paired data

Sign Test

Data The data consists a bivariate random sample (Xi, Yi),
where n′ is the number of the pairs. There should be
some natural basis for pairing the observations;
otherwise the X’s and Y’s are independent, and the more
powerful Mann-Whitney test is more appropriate.
Within each pair (Xi, Yi) a comparison is made and the
pair is classi�ed as:

“+" if Xi < Yi
“-" if Xi > Yi
“0" if Xi = Yi (tie)

Assumptions 1. The bivariate random variables (Xi, Yi) are mutually
independent .

2. The measurement scale is at least ordinal.
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Tests based on the Binomial: paired data

Sign Test

Test Statistic T = Total number of +’s
Null distribution is the Binomial distribution with p = 0.5 and

n=the number of non-tied pairs. For n less than or
equal to 20, otherwise the normal approximation.
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Tests based on the Binomial: paired data

Sign Test: Hypotheses

Two-tailed test
H0 : P(+) = P(−)

H1 : P(+) 6= P(−)

The null hypothesis is interpreted as X and Y have the same
location parameter, it can be rewritten as follows:

H0 : E(Xi) = E(Yi)

H1 : E(Xi) 6= E(Yi)

The rejection region is given by t and n− t where: P(Y ≤ t) ≈ α/2
Decision IF (TObs ≤ t or TObs ≥ n− t) REJECT H0
P-value 2 ×min(P(Y ≤ TObs),P(Y ≥ TObs))
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Tests based on the Binomial: paired data

Sign Test: Hypotheses

Upper-tailed test
H0 : P(+) ≤ P(−)

H1 : P(+) > P(−)

Similarly:
H0 : E(Xi) ≥ E(Yi)

H1 : E(Xi) < E(Yi)

The rejection region is de�ned by n− t as follows:

P(Y ≤ t) ≈ α

Decision IF TObs ≥ n− t REJECT H0
P-value P(Y ≥ TObs)
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Tests based on the Binomial: paired data

Sign Test: Hypotheses

Lower-tailed test
H0 : P(+) ≥ P(−)

H1 : P(+) < P(−)

Similarly:
H0 : E(Xi) ≤ E(Yi)

H1 : E(Xi) > E(Yi)

The rejection region is de�ned by t as follows:

P(Y ≤ t) ≈ α

Decision IF TObs ≤ t REJECT H0
P-value P(Y ≤ TObs)
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Tests based on the Binomial: paired data

Sign Test: Normal Approximation
These probabilities can be found using TABLE of the binomial
distribution if n ≤ 20, otherwise use the normal approximation

tq = 1/2(n+ zq
√
n)

The p-values with the normal approximation are:

P(Y ≤ TObs) ≈ P
(
Z ≤ 2TObs − n+ 1√

n

)
and

P(Y ≥ TObs) ≈ 1− P
(
Z ≤ 2TObs − n− 1√

n

)

54 59



Goodness-of-fit Tests



Goodness-of-fit Tests

Goodness of �t test
A test for goodness of �t is used to test if a random sample (from
some unknown distribution F(x)) does come from a speci�ed
distribution F∗(x).

Tests

Chi-squared test
Kolmogorov-Smirnov Test
Lilliefors Test is a Kolmogorov-Smirnov test that is based on
the z-score.
Shapiro-Wilk Test for Normality
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Goodness-of-fit Tests

Chi-squared test
The oldest and best-known goodness-of-�t test, �rst presented
by Pearson (1900). The Chi-squared test data consists of a
random sample X1, X2, X3, ..., Xn. These observations are grouped
in C classes. We have 1× C contingency table. The measurement
scale is at least nominal.

Classes 1 2 . . . C Total
Observed Frequencies O1 O2 . . . OC N
Expected Frequencies E1 E2 . . . EC N

where Ej = p∗j N; p
∗
j is the probability of a random observation in

class j, under the null hypothesis. j = 1, 2, . . . , C
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Goodness-of-fit Tests

Chi-squared test

Hypothesis
H0 : P(X ∈ Classj) = p∗j for all j = 1, 2, . . . , C

H1 : P(X ∈ Classj) 6= p∗j for at least one class

The Test statistic

T =
C∑
i=1

(Oi − Ei)2
Ei

T ∼H0 χ2C−1−K ; K is the number of estimated parameters. This
approximation requires that the number of Ej be large enough. There
are many rules that de�nes “large enough". Cochran(1952) proposed
none of Ej < 1 and 80% are > 5. We will use this rule in this class. We
will combine some cells if this rule is not satis�ed.

Decision Rule Reject H0 if T > χ21−α;C−1−K
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Goodness-of-fit Tests

Kolmogorov-Smirnov Test
The data consist of a random sample X1, X2, X3, ..., Xn.

Hypothesis
H0 : F(x) = F∗(x)

H1 : F(x) 6= F∗(x)

The Test statistic Let S(x) be the empirical distribution function based
on the data.

T = sup
x
| F∗(x)− S(x) | (5)

which is read “T equals the supremum, over all x, of the absolute value
of the di�erence F∗(x)− S(x)." The quantiles of T can be found in KS
tables or using R.

Decision Rule Reject H0 if Tobserved > T1−α
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Goodness-of-fit Tests

Shapiro-Wilk Test for Normality

Data The data consist of a random sample X1, X2, X3, ..., Xn.
Hypothesis

H0 :F(x) is normal with unspeci�ed mean and variance
H1 :F(x) is nonormal

Test Statistic The order statistic is given as X(1), X(2), X(3), ..., X(n)
from the smallest to the largest observation in the
sample.

W =

(∑k
i=1 ai(X(n−i+1) − X(i))

)2
∑n

i=1(Xi − X)
(6)

The quantiles of T can be found in tables of the Test or using R.
Decision Reject H0 if T > T1−α 59 / 59
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Methods based on Ranks
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