where \(\varepsilon_t\) is an ARMA(p,q) time series model:
\[
\phi(B)\varepsilon_t = \theta(B) Z_t
\]
\(Z_t\) is a white noise.
US Change Data
Daily air quality measurements in New York, May to September 1973.
library(itsmr)library(astsa)library(forecast)library(fpp3)autoplot(us_change,Consumption) +xlab("Year") +ylab("") +ggtitle("Quarterly changes in US consumption")
autoplot(us_change,Income) +xlab("Year") +ylab("") +ggtitle("Quarterly changes in US Personal Income")
fit =auto.arima(us_change$Consumption, xreg=us_change$Income)fit
Null hypothesis: Residuals are iid noise.
Test Distribution Statistic p-value
Ljung-Box Q Q ~ chisq(20) 52.62 1e-04 *
McLeod-Li Q Q ~ chisq(20) 13.06 0.875
Turning points T (T-130.7)/5.9 ~ N(0,1) 139 0.1582
Diff signs S (S-98.5)/4.1 ~ N(0,1) 100 0.7126
Rank P (P-9751.5)/466.1 ~ N(0,1) 8656 0.0188 *
## ARMA residuals -innovation-test(residuals(fit,type="innovation"))
Null hypothesis: Residuals are iid noise.
Test Distribution Statistic p-value
Ljung-Box Q Q ~ chisq(20) 13.03 0.8763
McLeod-Li Q Q ~ chisq(20) 26.53 0.1489
Turning points T (T-130.7)/5.9 ~ N(0,1) 137 0.2835
Diff signs S (S-98.5)/4.1 ~ N(0,1) 104 0.1768
Rank P (P-9751.5)/466.1 ~ N(0,1) 8952 0.0863
Air Quality data
summary(airquality)
Ozone Solar.R Wind Temp
Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
NA's :37 NA's :7
Month Day
Min. :5.000 Min. : 1.0
1st Qu.:6.000 1st Qu.: 8.0
Median :7.000 Median :16.0
Mean :6.993 Mean :15.8
3rd Qu.:8.000 3rd Qu.:23.0
Max. :9.000 Max. :31.0